Amazon Lookout for Vision is a machine learning service that spots defects and anomalies in visual representations using computer vision. With Amazon Lookout for Vision, manufacturing companies can increase quality and reduce operational costs by quickly identifying differences in images of objects at scale.
Basler and Amazon Lookout for Vision have collaborated to launch the “Amazon Lookout for Vision Accelerator PoC Kit” (APK) to help customers complete a Lookout for Vision PoC in less than six weeks. The APK is an “out-of-the-box” vision system (hardware + software) to capture and transmit images to the Lookout for Vision service and train/evaluate Lookout for Vision models. The APK simplifies camera selection/installation and capturing/analyzing images, enabling you to quickly validate Lookout for Vision performance before moving to a production setup.
Most manufacturing and industrial customers have multiple use cases (such as multiple production lines or multiple product SKUs) in which Amazon Lookout for Vision can provide support in automated visual inspection. The APK enables customers to use the kit to test Lookout for Vision functionalities for their use case first and then decide on purchasing a customized vision solution for multiple lines. Without the APK, you would have to procure and set up a vision system that integrates with Amazon Lookout for Vision, which is resource and time-consuming and can delay PoC starts. The integrated hardware and software design of the APK comprises an automated AWS Cloud connection, image preprocessing, and direct image transmission to Amazon Lookout for Vision – saving you time and resources.
The APK is intended to be set up and installed by technical staff with easy-to-follow instructions.
The APK enables you to quickly capture and transmit images, train Amazon Lookout for Vision models, run inferences to detect anomalies, and assess model performance. The following diagram illustrates our solution architecture.
The kit comes equipped with a:
See corresponding items in the following image:
In the next section, we will walk through the steps for acquiring an image, extracting the region of interest (ROI) with image preprocessing, uploading training images to an Amazon Simple Storage Service (Amazon S3) bucket, training an Amazon Lookout for Vision model, and running inference on test images. The train and test images are of a printed circuit board. The Lookout for Vision model will learn to classify images into normal and anomaly (scratches, bent pins, bad solder, and missing components). In this blog, we will create a training dataset using the Lookout for Vision auto-split feature on the console with a single dataset. You can also set up a separate training and test dataset using the kit.
After you unbox the kit, complete the following steps:
Now we can do the optical setup (as described in the next section), and start taking pictures.
In a few seconds, a live image from the camera appears.
You are redirected to the AWS Management Console, where you are asked to run the AWS CloudFormation stack.
We are now ready to upload our training images.
It’s essential that each image captured is of a unique object and not the same object captured multiple times. If you repeat the same image, the model will not learn normal, defect-free variations of your object, and it could negatively impact model performance.
In this step, we prepare the dataset and start training.
On the Models page, you can see the status indicate Training in progress and change to Training complete when the model is trained.
The model reports the precision, recall, and F1 scores. Precision is a measure of the number of correct anomalies out of the total predictions. A recall is a measure of the number of predicted anomalies out of the total anomalies. The F1 score is an average of precision and recall measures.
In general, you can improve model performance by adding more training images and providing a consistent lighting setup. Please note lighting can change during the day depending on your environment. (such as sunlight coming through the windows). You can control the lighting by closing the curtains and using the provided ring light. For more information, see how to light up your vision system.
To run inferences on new images, complete the following steps:
Make sure the object pose and lighting is similar to the training object pose and lighting. This is important to prevent the model from identifying a false anomaly due to lighting or pose changes.
Inference results for the current image are shown in the browser window. You can repeat this exercise with new objects and test your model performance on different anomaly types.
The cumulated inference results are available on the Amazon Lookout for Vision console on the Dashboard page.
In most cases, you can expect to implement these steps in a few hours, get a quick assessment of your use case fit by running inferences on unseen test images, and correlate the inference results with the model precision, recall, and F1 scores.
Basler and Amazon Web Services collaborated on an “Amazon Lookout for Vision Accelerator PoC Kit” (APK). The APK is a testing camera system that customers can use for fast prototyping of their Lookout for Vision application. It includes out-of-the-box vision hardware (camera, processing unit, lighting, and accessories) with integrated software components to quickly connect to the AWS Cloud and Lookout for Vision.
With direct integration with Lookout for Vision, the APK offers you a new and efficient approach for rapid prototyping and shortens your proof-of-concept evaluation by weeks. The APK can give you the confidence to evaluate your anomaly detection model performance before moving to production. As the kit is a bundle of fixed components, changes in the hard-and software may be necessary for the next step, depending on the customer application. After completing your PoC with the APK, Basler and AWS will offer customers a gap analysis to determine if the scope of the kit met your use case requirements or adjustments are needed in terms of a customized solution.
Note: To help ensure the highest level of success in your prototyping efforts, we require you to have a kit qualification discussion with Basler before purchase.
Contact Basler today to discuss your use case fit for APK: AWSBASLER@baslerweb.com
Learn more | Basler Tools for Component Selection
Amit Gupta is an AI Services Solutions Architect at AWS. He is passionate about enabling customers with well-architected machine learning solutions at scale.
Mark Hebbel is Head of IoT and Applications at Basler AG. He and his team implement camera based solutions for customers in the machine vision space. He has a special interest in decentralized architectures.